OpenLambda

Tyler Harter, Edward Oakes, Stephen Sturdevant, Leon Yang,
Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau

UNIVERSITY OF WISCONSIN-MADISON

p/ \WISCONSIN

Motivation

Scaling

Naturally bursty web applications (e.g. Hamilton tickets)

IL

Hard to scale web servers

—1
—

b
This webpage is not available (/ O DO)/ — —I———L

=R

Scaling

e \Ms are too slow to scale

reactively
o Have to predict a burst in order to
withstand it
e Predictively scaling web servers
is wasteful
o Why pay for resources you don'’t
use?

New scheduled action

Name:
Must be from 1 to 255 characters in length.
Instances: Min Max
Minimum and Maximum number of instances to run.
Desired capacity: (Optional)
Desired number of instances to run.
Ocourence: ECITRTL I |
Recurrent
Start time: | 2016-04-11T21:00:00Z ' M uTe

The time the action is scheduled to begin.

Current UTC time: 2016-04-11T720:44:24Z

e (20

Configuration

e Developer has to install a web server,
configure network settings, API

endpoints, etc
o Even for “Hello, World!”

e Developer cycles are often more
valuable than CPU cycles...

and more....

You may use the command line option '-5' to verify your virtual host
configuration.

#

Use name-based virtual hosting.
#

NameVirtualHost *:80

#
VirtualHost example:
Almost any Apache directive may go intc a VirtualHost container.
The first VirtualHost section is used for all requests that do not
match a ServerName or ServerAlias in any <VirtualHost> block.
#
<VirtualHost *:80>

ServerAdmin webmaster@dummy-host.home

DocumentRoot /www/docs/dummy-host.home

ServerName dummy-host.home

ServerAlias www.dummy-host.home

ErrorLog logs/dummy-host.home-error_ log

Customlog logs/dummy-host.home-access_log common
</VirtualHost>

<VirtualHost *:80>
ServerAdmin webmaster@dummy-host2.home
DocumentRoot /www/docs/dummy-host2.home
ServerName dummy-host2.home
ErrorLog logs/dummy-host2.home-error_log
Customlog logs/dummy-host2.home-access_log common
</VirtualHost>

Serverless

Microservices Architecture

Problem:

e Complex web applications lead to large, hard-to-debug codebases
e Effective deployment of web applications is difficult and important

Solution:

e Divide applications into modular pieces, call them services
e Communicate via a lightweight network mechanism
o e.g.remote HTTP API

Microservices Architecture

MICROSERVICES

MONOLITHIC ARCHITECTURE
ARCHITECTURE

=
User Interface
lIHHHH%%HHH%II
Business Logic _ /

<= CERR = o CSAS

. facebook
[thefacebook]

Data Access
Layer

s
L
-

Microservices Architecture

Philosophy:

e Services are small - perform a single, fine-grained function
e Each service is developed and deployed independently
o Allows for better tuned scaling

Benefits:

e Easier to deploy
e Better tuned scaling - no longer have to scale the whole monolith
e Naturally modular

e Smaller codebases and simpler design = faster development

“Serverless”

e Natural extension of the “Microservices” paradigm
e Developers simply upload code and invoke it via a trigger (API, database, etc)
o Blind of all provisioning, load balancing, etc

e Heavily influenced by the onset of Docker
o Container startup << VM startup

e Not actually serverless...

docker

Cloud Provider Perspective

Code store
o Metadata for decision-making?

Persistent storage
o Lambdas provide no state guarantees

Servers to execute requests
o Which VM to choose for any given request?

Isolation mechanism
Fine-grained billing
Debugging support
Triggers

o R.LP. RethinkDB?

Research Questions

De b § g g | N g Netflix & Micro-Services

e \Web applications are extremely complex
o Netflix: over 500 microservices

e Modularity can make debugging hard

o What “path” led to the invocation?

@bruce_m_wong

How can we support developers in debugging their
Lambda-based applications?

https://www.slideshare.net/brucewong3/the-case-for-chaos

Databases

e Lambdas are stateless, rely on entirely on distributed storage mechanisms
e Have access to the code before requests come in

o How can we leverage this to optimize Lambda placement?
e The Lambda storage access pattern is new, how does it performance on
distributed DBs, NFS, etc

o What is the best distributed storage scheme for serverless? Something new?

Load Balancing

e Cloud provider has complete control over where requests are executed

e \Want to optimize for:
o Database accesses (analyze access patterns?)
o Locality
m Sending requests to the same machine means things are warmed up
m Lambdas which call each other should be nearby
o Packages
m In memory > on disk > on network

e Trigger-based Lambdas lead to interesting scheduling problems
o Cron-job Lambdas with leeway

Package Support

e Web development is highly reliant on external libraries/packages
o AWS Lambda: only supports standard packages, makes doing anything interesting very
difficult

e Can we allow Lambdas to seamlessly access all of the PyPI repository? What

are the performance implications of this?
o Over the network? On disk? In memory?

ython’

Package
Index

Interpreter Caching

How big is PyPI?

e Scraped ~1,000,000 GitHub repositories labeled as Python project

e Parsed out all import statements and matched them to PyP| packages
o Not trivial, some assumptions required

e Hit ratio = number of import statements covered by packages in the cache

S

=3

(=]
1

300 =

200 -

Avg. Stars

100 =

Repositories (Thousands)

(=]
1

Import Hits vs Cache Size

96 =

84 =

1
N
~

1 1

o\oeH_I moq

1
©
™

wi

24 =

12 =

OL Architecture

load balancers workers

user — > EREGREIELH:
e \

Load Balancer

handler store

Worker (no caching)

Worker (caching)

[?i‘l

Package Caching

e Pre-initialized interpreters = packages already in memory

e Performance:
o How do we choose which packages to cache (import before fork)?
o How do we evict packages? Can’t remove an imported package from a running interpreter
o How do we match a request to an interpreter in the pool?
o How can we leverage this caching in the load balancer?
e Security:
o Importing on host machine is dangerous
m Don’t want to have to whitelist packages...
o Packages could overwrite global namespace (shared between all)
e FEvaluation:
o How do we generate a representative workload to evaluate caching mechanisms?

Questions?

