
OpenLambda
Tyler Harter, Edward Oakes, Stephen Sturdevant, Leon Yang,

Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau

Motivation
Serverless

Research Questions
Interpreter Caching

Scaling

Naturally bursty web applications (e.g. Hamilton tickets)

Hard to scale web servers

Scaling
● VMs are too slow to scale

reactively
○ Have to predict a burst in order to

withstand it

● Predictively scaling web servers
is wasteful

○ Why pay for resources you don’t
use?

Configuration
● Developer has to install a web server,

configure network settings, API
endpoints, etc

○ Even for “Hello, World!”

● Developer cycles are often more
valuable than CPU cycles...

and more....

Motivation
Serverless

Research Questions
Interpreter Caching

Microservices Architecture
Problem:

● Complex web applications lead to large, hard-to-debug codebases
● Effective deployment of web applications is difficult and important

Solution:

● Divide applications into modular pieces, call them services
● Communicate via a lightweight network mechanism

○ e.g. remote HTTP API

Microservices Architecture

MONOLITHIC
ARCHITECTURE

MICROSERVICES
ARCHITECTURE

Microservices Architecture
Philosophy:

● Services are small - perform a single, fine-grained function
● Each service is developed and deployed independently

○ Allows for better tuned scaling

Benefits:

● Easier to deploy
● Better tuned scaling - no longer have to scale the whole monolith
● Naturally modular
● Smaller codebases and simpler design = faster development

“Serverless”
● Natural extension of the “Microservices” paradigm
● Developers simply upload code and invoke it via a trigger (API, database, etc)

○ Blind of all provisioning, load balancing, etc

● Heavily influenced by the onset of Docker
○ Container startup << VM startup

● Not actually serverless...

Cloud Provider Perspective
● Code store

○ Metadata for decision-making?

● Persistent storage
○ Lambdas provide no state guarantees

● Servers to execute requests
○ Which VM to choose for any given request?

● Isolation mechanism
● Fine-grained billing
● Debugging support
● Triggers

○ R.I.P. RethinkDB?

Motivation
Serverless

Research Questions
Interpreter Caching

Debugging
● Web applications are extremely complex

○ Netflix: over 500 microservices

● Modularity can make debugging hard
○ What “path” led to the invocation?

https://www.slideshare.net/brucewong3/the-case-for-chaos

How can we support developers in debugging their
Lambda-based applications?

Databases
● Lambdas are stateless, rely on entirely on distributed storage mechanisms
● Have access to the code before requests come in

○ How can we leverage this to optimize Lambda placement?

● The Lambda storage access pattern is new, how does it performance on
distributed DBs, NFS, etc

○ What is the best distributed storage scheme for serverless? Something new?

Load Balancing
● Cloud provider has complete control over where requests are executed
● Want to optimize for:

○ Database accesses (analyze access patterns?)
○ Locality

■ Sending requests to the same machine means things are warmed up
■ Lambdas which call each other should be nearby

○ Packages
■ In memory > on disk > on network

● Trigger-based Lambdas lead to interesting scheduling problems
○ Cron-job Lambdas with leeway

Package Support
● Web development is highly reliant on external libraries/packages

○ AWS Lambda: only supports standard packages, makes doing anything interesting very
difficult

● Can we allow Lambdas to seamlessly access all of the PyPI repository? What
are the performance implications of this?

○ Over the network? On disk? In memory?

Motivation
Serverless

Research Questions
Interpreter Caching

How big is PyPI?
● Scraped ~1,000,000 GitHub repositories labeled as Python project
● Parsed out all import statements and matched them to PyPI packages

○ Not trivial, some assumptions required

● Hit ratio = number of import statements covered by packages in the cache

OL Architecture

Worker (no caching)

Worker (caching)

Package Caching
● Pre-initialized interpreters = packages already in memory
● Performance:

○ How do we choose which packages to cache (import before fork)?
○ How do we evict packages? Can’t remove an imported package from a running interpreter
○ How do we match a request to an interpreter in the pool?
○ How can we leverage this caching in the load balancer?

● Security:
○ Importing on host machine is dangerous

■ Don’t want to have to whitelist packages…
○ Packages could overwrite global namespace (shared between all)

● Evaluation:
○ How do we generate a representative workload to evaluate caching mechanisms?

Questions?

